Why Structured Error Messages?
In the real world, errors are a part of life. If you access and read data from real, in-production systems, sooner or later you will almost certainly encounter errors. While you may be unable to escape their unfortunate reality, at least in the Power Query world, they’re rendered out in an easy-to-read format:

Easy to read, that is, if you are a human, reading just one error all by itself.
But what if you’re trying to analyze a collection of error messages? Imagine a set of errors like the above, but which are for a variety of different codes and problems (e.g. bad code ‘A235’, problem ‘must contain at least 2 letters’, bad code ’15WA’, problem ‘cannot start with a number’, etc.).
Let’s say you want to summarize these errors, reporting out the count of errors per problem, per bad code. Manually reading errors one at a time no longer cuts it. Instead, you could write code that parses each error message, extracting the text between the phrase bad code ‘ and the following quote character, and between problem ‘ and the following quote character. With the code and problem statement now separately captured, you can use their values to group by or otherwise compute the desired summaries.
Parsing log messages like this this involves coding work. Not only does it take effort on your part, but it is also tricky to get right. For example, the logic described above finds the end of each string it matches by looking for the next quote character. What if a bad code or problem description includes a quote character? The logic we’ve been considering won’t match the entire value. Say, the message starts with Bad code ‘ABC’DEF’. The above logic will miss the second portion of the code (only capturing ABC, not the full ABC’DEF) because it incorrectly assumes that a bad code will never contain a quote. You could address this by writing more robust parsing code, but that’s more work—and this is only one example of the corner cases you may need to handle to accurately parse a family of log messages.
On the other hand, maybe your interest is not analyzing log message parameters, but rather removing them altogether. For data privacy or security reasons, you want sanitized log messages, where parameter values have been stripped out and replaced with generic placeholders. This way, “clean” log messages can be aggregated or retained long-term without the complications that accompany storing PII or other confidential information that may have found its way into error message parameters. While this may be the opposite of our first scenario (extracting message parameters for analysis purposes), implementing it still requires a technical means to differentiate between the base log message pattern (or template) and the parameters that have been filled into it. If you’re implementing this yourself, you’re looking at some form of log message parsing.
In either case, if only there was a way to avoid the effort and complexity associated with writing log message parsing code….
Introducing M’s Structured Error Messages
Meet M’s new structured error message capabilities!
M’s error functionality has recently been expanded to offer a new way of defining error messages, splitting message definition between a template and a list of parameter values. These components are preserved with first class representation in the error after it is raised, enabling error handling code (and, potentially by extension, external logging mechanisms and log analytics tools) to separately work with these components without the need for custom text parsing. This style of error message is known as a structured error message and is key to making structured logging possible.
Continue reading
